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Abstract

Models for the chemical bonding topologies of ternary molybdenum

chalcogenides (Chevrel phases) are derived using methods based on graph theory.

The MMo6 S8 Chevrel phases as well as their selenium analogues are viewed as

three-dimensional lattices of edge-localized discrete Mo 6 octahedra linked

electronically through interoctahedral metal-metal interactions. This porously

delocalized chemical bonding topology is suggested to be a feature of

superconducting systems exhibiting relatively high critical temperatures and

" uagnetic fields. Fusion of molybdenum octahedra through face-sharing leads

succetsively to the Mo 9 Sll naphthalene analogue and the Mo 12 S14 anthracene

analogue with increasing fusion leading to increasing delocalization of the chemical

*bonding topology within individual molybdenum cluster units. The infinite limit

of such fusion of molybdenum octahedra corresponds to the infinite chain

pseudo-one-dimensional metals [M 2 Mo 6 X6 iL (M = monovalent metal; X = S, Se,

Te) which are formulated with globally delocalized octahedral cavities. Thus

the progression from discrete Mo6 octahedra in the MMo 6 S8 Chevrel phases

to the infinite chains of face-fused octahedra in [M 2 Mo 6 X6 ] leads to a

progression from an edge-localized to a globally delocalized chemical bonding

topology.
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1. Introduction

Several years ago we developed a method based on graph theory1 for the

study of the bonding topology in polyhedral boranes, carboranes, and metal

clusters.2 ,3 Subsequent work has shown this method to be very effective in relating

electron count to cluster shape for diverse metal clusters using a minimum of

computation. Metal clusters treated effectively by this method include

post-transition metal clusters,4 osmium carbonyl clusters,5 gold clusters, 6 ,7

platinum "carbonyl clusters,6 ,8  rhodium carbonyl clusters having fused

polyhedra, 9 , 10 and octahedral early transition metal halide clusters.3 ,1 1 A recent

paper l l shows how this graph theory derived method can be extended to infinite

one-dimensional chains and infinite two-dimensional sheets of fused metal

octahedra thereby suggesting the application of this method for the study of

solid state materials exhibiting interesting electronic properties, particularly

solids containing discrete metal cluster structural units.

This paper describes the first application of our graph theory derived method

to the study of superconducting materials. In this connection Vandenberg and

Matthias1 2 have shown that most high-temperature superconductors contain

discrete metal clusters in their crystal lattices thereby suggesting the relevance

of this approach.

The particular superconductors treated in this paper are the ternary

molybdenum chalcogenides, commonly known as Chevrel phases.13,14 These

phases were the first superconducting ternary systems found to have relatively

high critical temperatures 15 reaching 15 K for PbMo 6 S8. In addition the upper

critical field of PbMo6S8 (Hc 2 -60T) is the highest value cbserved for any class

of superconductors. 16 ,1 7 From the structural point of view the Chevrel phases

are constructed from Mo 6 octahedra, which, depending upon the system, can

S.J
* .
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be discrete (i.e., joined only at vertices) and/or fused together. 14 The discrete

Mo6 octahedra in Chevrel phases may be considered to have a bonding topology

analogous to that in the halides L6Mo6 X8
4 , (L = 2-electron donor ligand) which

have been treated extensively both by graph theory derived3 , 1 1 and

other 18,19,20,21 methods. Fusion of molybdenum octahedra in the Chevrel phases

involves sharing of opposite triangular faces similar to some rhodium carbonyl

anions1 0 but different from the sharing of opposite edges found in the infinite

chain lanthanide halide clusters such as Gd2C1311, 2 2

Several theoretical treatments of the Chevrel phases have already been

reported including the tight binding calculations of Mattheiss and Fong, 2 3 localized

orbital calculations of Bullett,2 4 molecular orbital and bard structure calculations

by Burdett and Lin,2 5 bond order calculations for the metal-metal bonds by

Corbett, 2 6 extended Hdckel combined molecular orbital and crystal orbital analysis

by Hughbanks and Hoffmann2 7 as well as several energy-band studies using

muffin-tin orbitals.28 ,2 9 Strengths of the graph-theory derived method used

in this paper include the following:

(1) The ability to deduce important information about the electron counts and

shapes of diverse metal clusters using a minimum of computation.

(2) The ability to deduce information concerning the distribution of total cluster

electron counts between skeletal bonding within the cluster polyhedron and bonding

to external ligands.

(3) Ability to distinguish between localized and delocalized bonding in cluster

polyhedra.

The latter two points are potentially important for understanding the electronic

properties of materials built from metal cluster units including their

superconducting properties.

a-e sj*.W A~~*C~, -
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2. Background

The topology of chemical bonding can be represented by a graph in which

the vertices correspond to atoms or orbitals participating in the bonding and

the edges correspond to bonding relationships. The adjacency matrix A of a

graph, such as a graph representing chemical bonding, can be defined as follows:

0 if i =j

Aij if i and j are connected by an edge (1)

if i and j are not connected by an edge

The eigenvalues of the adjacency matrix are obtained from the following

determinantal equation:

IA - xl 0 (2)

in which I is the unit matrix (ii = 1 and lij =0 for i : j).

The eigenvalues of the adjacency matrix of the graph representing the relevant

chemical bonding correspond to the energy levels of topological molecular orbitals.

This apfroach is related to Hdckel theory. 30 , 3 1 ,3 2 ,3 3 which uses the secular

equation

I H- ESI= 0 (3)

in which the energy matrix H and overlap matrix S can be resolved into the unit

matrix I and the adjacency matrix A as follows:

H al + BA (4a) f

~i
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S= I+ SA (4b)

The Hdckel energy levels of the system are related to the eigenvalues x of the

adjacency matrix A (equation 2) as follows:

E = xB x (5)
1+ xS

Thus a positive eigenvalue x of A corresponds to a bonding orbital and a negative

eigenvalue x corresponds to an antibonding orbital in the corresponding chemical

system. In this simple way graph theory can be used to determine the number

of bonding and antibonding orbitals for a bonding topology represented by a given

adjacer.cy matrix A. Such information, although very limited compared with

information obtainable at least in principle by more sophisticated methods which

are much more complicated computationally, is sufficient to determine favored

electron counts for different molecular shapes which are of considerable

importance in metal cluster chemistry.

The two extreme types of chemical bonding topology in polyhedral metal

clusters may be called edge-localized and globally delocalized.2 , 3  An

edge-localized polyhedron has two-electron two-center bonds along each edge

of the polyhedron. A globally delocalized polyhedron has a multicerter core

bond in the center of the polyhedrcn and may be regarded as a three-dimensional

"aromatic" system. 3 4 A complicated metal cluster system consisting of fused

and/or capped polyhedra can have globally delocalized bonding in some polyhedral

regions and edge-localized bonding in other polyhedral regions.

One of the major achievements of the graph-theory derived approach to the

chemical bonding topology in globally delocalized systems is the demonstration

of the close analogy between the bonding in two-dimensional planar polygonal

r
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aromatic systems such as benzene and that in three-dimensional deltahedral

boranes and carboranes,2 where a deltahedron is a polyhedron in which all faces

are triangles. The latter three-dimensional structures are topologically equivalent

to metal cluster structures through ideas first presented by Wade in 197135 and

subsequently developed extensively by Hoffmann as isolobality.3 6

Consider a globally delocalized polygonal or deltahedral system having n

vertices. The skeletal bonding topology of such a system involves three valence

orbitals from each vertex atom which are known 2 as internal orbitals. The set

of three internal orbitals on each vertex atom is divided into two twin or tangential

internal orbitals and one unique cr radial internal orbital. Pairwise overlap

between the 2n twin internal orbitals is responsible for the formation of the

polygonal or deltahedral framework and leads to the splitting of the 2n orbitals

into n bonding and n antibonc,.g orbitals thereby providing surface bonding in

the case of globally delocalized deltahedra. This bonding is supplemented by

additional bonding and antibonding orbitals formed by global mutual overlap

of the n unique internal orbitals. This overlap can be represented by a graph

G in which the vertices correspond to the vertex atoms or (equivalently) their

unique internal orbitals and the edges represent pairs of overlapping unique internal

orbitals. The relative energies of the additional molecular orbitals arising from

such overlap of the unique internal orbitals are determined from the eigenvalues

x of the adjacency matrix A of the graph G (see equations 2 and 5 above). In

the case cf berzene the graph G is the C6 graph (hexagon) which has three positive

and three negative eigenvalues corresponding to the three w bonding and three

7* artibonding orbitals, respectively. In the case of a globally delocalized

deltahedrcn having n vertices such as found in deltahedral boranes BnHn 2 - and

carboranes C2Bn_2Hn (6<n<12) as well as some octahedral metal clusters (n =

6), the graph G is the complete graph Kn in which each of the vertices has an
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edge going to every other vertex for a total of n(n-i)/2 edges. This corresponds

to an n-center bond at the center (core) of the deltahedron formed by overlap

of each unique internal orbital with every other unique internal orbital. The

complete graph Kn has one positive eigenvalue and n-1 negative eigenvalues

regardless of the value of n indicating that the n-center core bond in a globally

delocalized deltahedral cluster leads to only one new bonding molecular orbital.

Thus the overlap of the unique internal orbitals in both the two-dimensional

polygonal and the three-dimensional deltahedral globally delocalized systems

leads to an odd number of additional bonding molecular orbitals corresponding

to 4k + 2 it-electrons for the polygonal systems. The core bonding of the globally

delocalized deltahedral systems also follows the 4k + 2 electron rule with k

0. Furthermore, the sum of the n bonding orbitals arising from the surface bonding

of the twin internal orbitals and the single bonding orbital arising from the n-center

core bonding of the unique internal orbitals gives a total of n+1 bonding orbitals

for globally delocalized deltahedra having n vertices. Filling these n+1 bonding

orbitals with electron pairs in the usual way gives a total of 2n+2 skeletal bonding

electrons in accord with the observed number in stable globally delocalized

deltahedral boranes, carboranes, and metal clusters. Further details of this bonding

model are presented elsewhere. 2 ,3 In addition, recent work 3 7 indicates that

for globally delocalized octahedral boranes, this simple graph-theory derived

model gives results consistent with simple extended Hdckel calculations.

The relationship between the number of edges meeting at a vertex (the vertex

degree) and the number of internal orbitals used by the atom at the vertex in

question determines whether or not the bonding in the polyhedral cluster is

edge-localized or globally delocalized.3 Thus edge-localized bonding requires

that all vertex degrees match the number of internal orbitals used by the

corresponding vertex atoms. Conversely, delocalization occurs when there is
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a mismatch between the vertex degrees of the polyhedron and the numbers of .4

internal orbitals provided by the corresponding vertex atoms. Since the above

model for globally delocalized cluster bonding requires three internal orbitals

from each vertex, the smallest globally delocalized polyhedron is the regular

octahedron, which is the smallest polyhedron having no vertices of degree 3.

Metal octahedra, whether globally delocalized using 3 internal orbitals from

each vertex atom or edge-localized using 4 internal orbitals from each vertex

atom, are frequently encountered building blocks for metal clusters including

the Chevrel phases discussed in this paper. Relationships between edge-localized

and globally delocalized metal octahedra as well as face-localized meta! octahedra

involving an intermediate degree of delocalization have been discussed for early

transition metal halides1 1 and will be reviewed in the next section in preparation

for the discussion of the chemical bonding topology of Chevrel phases.

The extended Hdckel treatment of Hughbanks and Hoffmann 2 7 considers

the closed shell electronic configurations of the metal cluster building blocks

of the Chevrel phase structures. The treatment of this paper likewise starts

from these closed shell electronic configurations and develops a model for their

chemical bonding topologies. The actual Chevrel phases have effective electron

counts per cluster unit one to two electrons less than the closed shell electronic

configurations of the individual cluster units thereby providing the partially filled

energy bands required for their conducting properties. In addition intercluster

metal-metal interactions in the Chevrel phases provide electronic bridges between

the individual discrete metal cluster units which also are essential for the

conducting properties.

3. Discrete Octahedra

The octahedral metal cluster building blocks for the Chevrel phases are closely

related to certain early transition metal halides built from discrete octahedral

7
.- t~d .. . . ..
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metal clusters which have been discussed in recent papers. 11' 2 1 The two

complementary types1 1' 2 1 of such clusters are the face-bridged edge-localized

Mo6 X8 L6
4 + and the edge-bridged face-localized Nb 6 X 12 L6 2+; the discrete

octahedral molybdenum clusters of the Chevrel phases are analogous to the former

and also have electronic configurations consistent with an edge-localized bonding

topology.

The prototypihal examples of edge-localized octahedral metal cluster halides

are the molybdenum(ll) halide derivatives generally represented as Mo 6 X8 1_6 4 +

including "molybdenum dichloride," Mo 6 (P3 -CI) 8 CI 2 CI4/ 2 .3 8  The structures

of these compounds consist of Mo 6 octahedra, a face-bridging (P3) halogen atom

in each of the eight faces of the Mo 6 octahedra, and one bond from each

molybdenum vertex to an external ligand L), which may be a halogen atom bridging

to another Mo 6 octahedron. The eight halogen atoms capping the faces of a

given Mo 6 octahedron thus form a cube surrounding the Mo 6 octahedron (Figure

1). Each neutral halogen vertex functions as a donor of five skeletal electrons

*" leaving an electron pair to function as a ligand to a molybdenum atom in an

adjacent octahedron. The vertex molybdenum atoms are nine-coordinate using

a 4-capped square antiprism coordination polyhedron1 1 with the external ligand

in the axial position, four bonds to face-bridging halogen atoms in the four medial

positions, and the four internal orbitals in the basal positions forming the

two-center bonds with the adjacent molybdenum atoms in the Mo 6 octahedron.

An LMo vertex using 4 internal orbitals and thus 5 external orbitals is a (5)(2)

- 6 - 2 = 2 electron acceptor (or -2 electron donor) after allowing 6 electrons

from the neutral molybdenum atom and 2 electrons from the neutral external

ligand L. This leads to the following electron-counting scheme 3 ,1 1:
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6 LMo vertices: (6)(-2) -12 electrons

8 P3-X bridges: (8)(5) =40 electrons

+4 charge -4 electrons

Total skeletal electrons 24 electrons

These 24 skeletal electrons are exactly the number required for an edge-localized

octahedron having two-center bonds along each of its 12 edges.

Now consider the Chevrel phases of the general formulas MnMo6S8 and

MnMo6Se8 (M = Ba, Sn, Pb, Ag, lanthanides, Fe, Go, Ni, etc.). The basic building

blocks of their structures are Mo6S8 (or Mo6Se8) units containing a bonded Mo6

octahedron (Mo-Mo distances in the range 2.67 to 2.78 9) with a sulfur atom

capping each face leading to an Mo6 octahedron within an S8 cube as depicted

in Figure 1. Each (neutral) sulfur atom of the S8 cube functions as a donor of

four skeletal electrons to the Mo6 octahedron within that S8 cube leaving an

electron pair to function as a ligand to a molybdenum atom in an adjacent Mo6

octahedron. Maximizing this sulfur electron pair donation to the appropriate

molybdenum atom in the adjacent Mo6 octahedron results in a tilting of the Mo6

octahedron by about 250 within the cubic array of the other metal atoms M.

II.

These other metal atoms M furnish electrons to the Mo6 S8 units allowing them

to approach but not attain the Mo6S8
4 closed shell electronic configuration.

This corresponds to a partially filled conduction band. Electronic bridges between

individual M06 octahedra are provided by interoctahedral metal-metal interactions

(nearest interoctahedral Mo-Mo distances in the range 3.08 to 3.49 tor Mo6S8

and Mo 6Se8 derivatives13).

The Mo6 S8
4 closed shell electronic configuration for the fundamental Chevrel

phase building block is isoelectronic with that of the Mo6 X8 L6 
4 halides discussed

above remembering that each molybdenum vertex receives an electron pair from

Mn~d~ 8 M =Ba S, P, glanhaids, eCo Ni ec.. Te asc bilin
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a sulfur atom of an adjacent Mo 6 S8 unit and thus may be treated as an LMo vertex.

This leads to the following electron counting scheme for the closed shell Mo 6 S8
4 -

unit:

S

h

6 LMo vertices: (6)(-2) = -12 electrons

8 p3 -S bridges: (8)(4)= 32 electrons

-4 charge 4 electrons

Total skeletal electrons 24 electrons

These 24 skeletal electrons are again the exact number required for an S.

edge-localized octahedron having two-center bonds along each of the 12 edges.

4. Fusion of Octahedra

The Chevrel phases include not only species constructed from discrete Mo6 S8

(or Mo 6 Se8 ) octahedra but also species constructed from Mo 9 Sl1, Mo 12 S14 , and

(Mo6 S6 )- units formed by the fusion of octahedra by sharing triangular faces.

This fusion process may be regarded as analogous to the formation of polycyclic I

aromatic hydrocarbons from the fusion of hexagons by sharing edges. This suggests

the classification of fused molybdenum octahedra by the trivial name of the

polycyclic benzenoid hydrocarbon having an analogous configuration of its planar

hexagon building blocks as depicted in Figure 2. A similar scheme has recently

been suggested for the treatment of rhodium carbonyl clusters having related

structures based on face-fused octahedra.10

The molybdenum atoms in the fused octahedra of Figure 2 are of two types,

inner and outer. Outer molybdenum atoms are similar to those in the discrete

octahedral Mo 6 S8 building blocks discussed above. They thus use 4 internal orbitals

U'%
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and receive an electron pair from a sulfur atom of an adjacent metal cluster

unit (indicated by arrows in Figure 2). The inner molybdenum atoms (circled

in Figure 2) use 6 internal orbitals and do not receive an electron pair from a

sulfur atom of an adjacent metal cluster. They are therefore zero electron donors -

[(3)(2) - 6 - 0]. Edges connecting pairs of inner molybdenum atoms are bridged

by sulfur atoms but these sulfur atoms also bond to one molybdenum atom in

each adjacent Mo 3 triangle ("above" and "below" in Figure 2) so that they function

as pseudo-5-coordinate P4 sulfur atoms and donors of four skeletal electrons

to their own cluster units. Thus all sulfur atoms in the species depicted in Figure

2 function as four-electron donors when considered as neutral ligands to a single

aggregation of face-fused Mo 6 octahedra. The electron and orbital counting

of these systems can then proceed as follows considering only orbitals involved

in the metal-metal bonding:

(1) Naphthalene analogue, Mo 9Sl1
4 " "

(a) Source of skeletal orbitals and electrons:

6 outer LMO vertices 24 orbitals -12 electrons

3 inner Mo vertices 18 orbitals 0 electrons

11 S atoms 44 electrons

-4 charge 4 electrons

Totals available for skeletal bonding 42 orbitals 36 electrons

(b) Use of skeletal orbitals and electrons for metal-metal bonding of various

types:

6 edge bonds on outer triangles 12 orbitals 12 electrons

6 face bonds connecting inner and

outer triangles 18 orbitals 12 electrons

6 edge bonds connecting inner and

outer triangles 12 orbitals 12 electrons

Totals used in skeletal bonding 42 orbitals 36 electrons

-'x'
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Note that the bonding topology of Mo 9 S1 1
4 " contains 3 three-center Mo-Mo-Mo

face bonds in each of the 2 octahedra between an outer and inner Mo 3 triangle

similar to the three-center Nb-Nb-Nb face bonds in the Nb6 X 1 2 L6 2+ mentioned

above and discussed in more detail elsewhere. 11,21

(2) Anthracene analogue, Mo 12S146-

(a) Source of skeletal orbitals and electrons:

6 outer LMo vertices 24 orbitals -12 electrons

6 inner Mo vertices 36 orbitals 0 electrons

14 S atoms 56 electrons

-6 charge 6 electrons

Totals available for skeletal bonding 60 orbitals 50 electrons

(b) Use of skeletal orbitals and electrons for metal-metal bonding of various

types

Globally delocalized inner Mo 6 octahedron:

Surface bonding 12 orbitals 12 electrons

Core bonding 6 orbitals 2 electrons

Outer Mo 3 triangles:

6 edge bonds 12 orbitals 12 electrons

Octahedra formed by an outer and an inner Mo 3 triangle

6 face bonds 18 orbitals 12 electrons

6 edge bonds 12 orbitals 12 electrons

Totals used in skeletal bonding 60 orbitals 50 electrons

This bonding model suggests that of the three octahedral cavities in the Mo 1 2 S1 4 6-

structure, the octahedral cavity formed by the two inner Mo 3 triangles has globally

delocalized bonding whereas the two equivalent octahedral cavities formed by

. . . . % .
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one outer and one inner Mo 3 triangle have the same combination of two-center

(edge) and three-center (face) bonds as the two (equivalent) octahedral cavities

in the Mo 9 Sl 4 - cluster discussed above.

Continuation of this principle of face-fused octahedra predicts the existence

2n-of a homologous series with the general formula Mo3n+3nS5+3n in which the

difference between the numbers of atomic orbitals and electrons available for

skeletal bonding follows a 4(n-1) + 2 rule where n is the number of octahedral

cavities. The known face-fused octahedral molybdenum chalcogenide clusters

depicted in Figure 2 consist of linearly fused metal octahedra analogous to the

series benzene, naphthalene, anthracene, naphthacene, etc. Angularly fused

metal octahedra analogous to phenanthrene are possible in principle but so far

have not been observed.

The limit to the face-sharing fusion of molybdenum octahedra is the linear

polyacene analogue (Mo 6 S6 2-). (Figure 2) known in a number of derivatives

[M2 Mo 6S6 ] = (M = K, Rb, Cs) as well as the selenium analogues [M2 Mo 6 Se6b-

(M = Na, K, Rb, Cs, TI, Ag) and the tellurium analogues [M2 Mo 6 Te 6m (M = R b,

Cs, In, TI). 39 ,40 The structures of these systems consist of infinite chains of

face-fused octahedra. All molybdenum atoms are inner molybdenum atoms and

none of the chalcogens bridge to other chains so that there are no close contacts

between the different chains. In accord with this structure these systems function

as pseudo-one-dimensional metals with strongly anisotropic conductivities several

hundred times larger parallel to the chains of octahedra relative to the

perpendicular directions.3 9 ,41 The Mo 6 / 2S6 /2" octahedra serving as building

blocks for these [M2Mo 6 S6 derivatives and their selenium and tellurium analogues

have 13 skeletal electrons, i.e. none from the (inner) molybdenum vertices, 12

= (3)(4)] from the three sulfur atoms,-and 1 from the -1 charge. These 13 skeletal

electrons per Mo 6 /2 S6 / 2 are one less than the 14 skeletal electrons required

-M.
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for the octahedral cavity to be globally delocalized (2v + 2 = 14 for v = 6). These

holes in the closed shell electronic configurations for globally delocalized

(Mo 6 S6
2 -).. provide a mechanism for electronic conduction along the chains of

face-fused octahedra. Peierls distortions4 2, 4 3 leading to alternately long and

short spaces between the Mo 3 X3 (X = S, Se, Te) units in the chains of fused

octahedra appear to be relatively unfavorab!e for these systems but have been

suggested4 0 ,4 4 to account for the broad metal-semiconductor transitions in the

ternary molybdenum tellurides (M2 Mo 6 Te 6 ]oa (M = Rb, Cs).

5. Conclusion

The chemical bonding topology of the Chevrel phases MMo 6 S8 consisting

of edge-localized discrete Mo 6 octahedra linked through sulfur atoms as well

as interoctahedral metal-metal interactions leads naturally to the concept of

porous delocalization. Thus the bonding in a polyhedron with edge-localized

bonding is porous in contrast to the dense bonding in a polyhedron with globally

delocalized bonding. In other words porous chemical bonding involves only the

1-skeleton4 5 of the polyhedron in contrast to dense chemical bonding which

involves the whole volume of the polyhedron. An interesting refinement of the

ideas of Vandenberg and Matthias12 arising from this analysis of the chemical

bonding topology of the Chevrel phases as well as that of the ternary rhodium

borides in the subsequent paper is the conjecture that a porously delocalized

three-dimensional network consisting of electronically linked polyhedral metal

clusters having edge-localized chemical bonding leads to superconducting systems

having relatively high critical fields and temperatures. Thus the porosity of

the chemical bonding in these systems makes their superconductivity less

susceptible to magnetic fields and temperature than that of densely delocalized

9.'
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systems such as pure metals. This idea appears to be related to the suggestion4 6

that the high critical field of the Chevrel phases is due to a certain localization

of the conduction-electron wave function on the Mo 6 clusters leading to an

extremely short mean free path and/or a low Fermi velocity corresponding to

a small B.C.S. coherence length.

The other interesting conclusion from this paper is that fusion of octahedra

by face-sharing increases the delocalization of their chemical bonding topology.

Thus the discrete Mo 6 octahedra in the MMo 6 S8 Chevrel phases exhibit

edge-localized bonding whereas the Mo 6 / 2 octahedral units in the [M2 Mo 6S6 ]

infinite chains of face-sharing octahedra exhibit globally delocalized bonding.

Acknowledgment: We are indebted to the Office of Naval Research for partial

support of this work. ,"
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Figure 1: The Mo 6 octahedron within a halogen or chalcogen cube as a building

block for the octahedral molybdenum clusters discussed in this paper.

Arrows indicate sites of coordination with external ligands, halogens,

or chalcogens from adjacent metal cluster units.

Figure 2: Analogy between the fusion of molybdenum octahedra in ternary

molybdenum sulfide structures and the fusion of benzene rings in planar

polycyclic aromatic hydrocarbons. Uncircled vertices are outer

molybdenum atoms and circled vertices are inner molybdenum atoms.

Arrows indicate sites of coordination with sulfur atoms of adjacent

metal cluster units. Sulfur atoms are omitted for clarity. Similar

structural units are present in analogous molybdenum selenides and

tellurides.
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